PMID: 17194753 RLIMS-P 6 Check other iTextMine results Issue Report
Title
1. | Specific phosphorylation of p120-catenin regulatory domain differently modulates its binding to RhoA. |
Abstract
2. | p120-catenin is an adherens junction-associated protein that controls E-cadherin function and stability. |
3. | p120-catenin also binds intracellular proteins, such as the small GTPase RhoA. |
4. | In this paper, we identify the p120-catenin N-terminal regulatory domain as the docking site for RhoA. |
5. | Moreover, we demonstrate that the binding of RhoA to p120-catenin is tightly controlled by the Src family-dependent phosphorylation of p120-catenin on tyrosine residues. |
6. | The phosphorylation induced by Src and Fyn tyrosine kinases on p120-catenin induces opposite effects on RhoA binding. |
7. | Fyn, by phosphorylating a residue located in the regulatory domain of p120-catenin (Tyr112), inhibits the interaction of this protein with RhoA. |
8. | By contrast, the phosphorylation of Tyr217 and Tyr228 by Src promotes a better affinity of p120-catenin towards RhoA. |
9. | In agreement with these biochemical data, results obtained in cell lines support the important role of these phosphorylation sites in the regulation of RhoA activity by p120-catenin. |
10. | Taken together, these observations uncover a new regulatory mechanism acting on p120-catenin that contributes to the fine-tuned regulation of the RhoA pathways during specific signaling events. |
Loading...
Loading data