BioCreative IV-User Interactive Task

RLIMS-P Annotation Task

This document contains information about the annotation workflow for the Full BioCreative interactive task.

Annotation Workflow using RLIMS-P

- 1. Go to URL <u>http://annotation.dbi.udel.edu/text_mining/rlimsp2/ (you can use one of the</u> following browsers Chrome, Firefox or Safari)
- 2. Login: this is important in order to save your results. If successful your user name should appear in the menu on the upper right corner.
- **3. Track time** it takes to go through the activity of annotating the abstracts using RLIMS-P. Do the same for the manually annotated set.
- Enter PMIDs in PMID box (to be provided by organizers) or search based on keywords of interest.
- 5. Validate Annotation for 30 PMID results in table. The goal is to validate for each PMID i) substrate, kinase and sites at the abstract level for those with experimental information. Abstract level means that if the document mentions in multiple sentences that protein X is phosphorylated by kinase Y, you only select one of the instances for annotation; ii) UniProtKB accessions for the individual protein annotated (if possible).

If the document provides a statement of a kinase-substrate-site in previous work you should not validate that information. Only for the things that the paper is about.

6. Save output:

For your records save your annotation using the save button in evidence text/curation page. Alternatively, go to My Curation tab and save the complete result at the end of the activity.

7. Record end time

Annotation Workflow manual mode

- 1. Track time it takes to go through the activity of annotating all the abstracts
- 2. Enter PMID list in PubMed
- 3. Add Annotation to template spreadsheet:

For each PMID provide **i**) tuples of substrate, kinase and sites at the abstract level. Abstract level means that if the abstract mentions in multiple sentences that protein X is phosphorylated by kinase Y, you only select one of the instances for annotation; **ii**) UniProtKB accessions for the individual proteins annotated as substrate and kinase (if possible).

4. Save output:

Record all output in spreadsheet. Save all the information and submit back to Task Organizers when you are finished

5. Record end time

At the end of the activity **Complete user survey (link to be added)**

You can use the examples below to practice and get familiar with the task and the system.

Example of RLIMS-P annotation Task

- Go to RLIMS-P page http://annotation.dbi.udel.edu/text_mining/rlimsp2/
- Log in
- Record starting time.
- Enter PMIDs in the corresponding box: 23613946, 22511927, 22037766

IMS-P Search Form Enter Keywords (accepts Boolean op	erators (AND, OR, NOT))		
	Submit Query Reset		
Or Enter PubMed IDs (PMIDs) delim	ted by "," or space, e.g., 15234272, 1643643	7.	
23613946			
22511927			
22037766			
		.4	
Submit Query Reset			
You can process up to 200 PMIDs p	s run Sample output		
rou can process up to 200 PivilDs p	a run. <u>Sample output</u>		

• To review annotation and edit select text evidence/curation icon. The default view of the table shows a summary of the kinases and substrates that are mentioned in the abstract. You could change the view if needed, but for curation you would need to go to Text Evidence/curation page.

Summary	Show all annotations 🚯			View by Summa	ry 👻 Download 👻
Show Selected	PubMed ID 💠	Protein Kinase 💠	Phosphorylated Protein (Substrate) +	No. of Sentences \$	Text Evidence/Curation
	23613946	beta-tc6 cell	fak (y576), fak (y397), erk (t202/y204), fak	1	<u>Æ</u> 1
	22511927	kinase d1 (pkd1)	beta catenin, t120 beta-catenin	5	<u>kı</u>
	22037766	mink1	prickle	1	¢1

• In Evidence page, inspect the result table for RLIMS-P annotation and the abstract. Validate only abstract-level information. This example is for PMID:22511927.

The information in this abstract about phosphorylation could be summarized as

beta catenin is phosphorylated at Thr-120, Ser-37 and Thr-41

beta catenin phosphorylation at Thr-120 by Protein kinase D1

				PubMed I	nformation						
225	11927	¢1	2012	Du C, Zhang C, Li Z,	Du C, Zhang C, Li Z, Biswas MH, Balaji KC					ll Text	
				RLIMS-P A	nnotation						?
No.		Kinase		Substrate	Site	S	entence	Com	nent	Valida	tior
1	kina	se d1 (pkd1)	beta catenin (beta- catenin)	Thr-120		4, 7			1	X
2	kina	se d1 (pkd1) (pkd1)	t120 beta-catenin	Thr-120		6			√	Х
3				beta catenin (beta- catenin)	eta catenin (beta- atenin) Thr-120, Ser-37, Thr-41					✓.	Х
									Add	Annota	tion
				Gene Norm	alization						+ ?
Pro	tein	N	lame	UniPro	otKB AC	AC Add UniProtKB			AC Annotation No		
Kin	200	kinase d1	(pkd1)	P98161/PKD1_	HUMAN √ X				1		
	400	pkd1		P98161/PKD1_	P98161/PKD1_HUMAN V X			1, 2			
Subs	trate	beta-cate	nin	P35222/CTNB1	_HUMAN ✓ X				1, 3	3	
		t120 beta-	-catenin	Not normalized					2		

	Back to Views 👻 Download 👻 Layout 👻							
	Text Evidence							
1	$\label{eq:constraint} Π - $Beta-catenin phosphorylated at threeonine 120 antagonizes generation of active beta-catenin by spatial localization in trans-Golgi network .$							
2	! AB - The stability and subcellular localization of beta-catenin , a protein that plays a major role in cell adhesion and proliferation , is tightly regulated by multiple signaling pathways .							
3	While aberrant activation of beta-catenin signaling has been implicated in cancers , the biochemical identity of transcriptionally active beta-catenin (ABC), commonly known as unphosphorylated serine 37 (S37) and threonine 41 (T41) beta-catenin , remains elusive .							
4	$^{\rm i}$ Our current study demonstrates that ABC transcriptional activity is influenced by <u>phosphorylation</u> of T120 by Protein Kinase D1 (PKD1) .							
5	Whereas the nuclear beta-catenin from PKD1-low prostate cancer cell line C4-2 is unphosphorylated S37/T41/T120 with high transcription activity , the nuclear beta-catenin from PKD1-overexpressing C4-2 cells is highly phosphorylated at T120 , S37 and T41 with low transcription activity , implying							

6 In human normal prostate tissue , the phosphorylated T120 beta-catenin is mainly localized to the trans-Golgi network (TGN , 22/30 , 73%) , and this pattern is significantly altered in prostate cancer (14/197 , 7.1%) , which is consistent with known down regulation of PKD1 in prostate cancer

that accumulation of nuclear beta-catenin alone cannot be simply used as a read-out for Wnt activation

7 These in vitro and in vivo data unveil a previously unrecognized post-translational modification of ABC through T120 phosphorylation by PKD1 , which alters subcellular localization and transcriptional activity

Click on the check mark for the correct annotations (will turn green). Ignore annotations that do not add value such as those in No. 2 or No. 3 (in the box below).

		RLIMS-P Annot	ation			
No.	Kinase	Substrate	Site	Sentence	Comment	Validation
1	kinase d1 (pkd1)	beta catenin (beta-catenin)	Thr-120	4, 7		√ X
2	kinase d1 (pkd1) (pkd1)	t120 beta-catenin	Thr-120	6		√ X
3		beta catenin (beta-catenin)	Thr	1		√ X
4		beta catenin (beta-catenin)	Thr-120, Ser-37, Thr-41	5		√ X
					Ade	d Annotation

Inspect the Gene Normalization table. Validate when possible, add new if needed. For this • activity you need to find species information for the individual proteins that you validated as kinase or substrate so you can link to the corresponding UniProtKB accession. Use the + icon to include the UniProtKB ID and protein name in the table. This usually helps to identify the entries.

			Cone Ma	rmalization			1.2
			Gene No	manzation			• •
Prote	in Nai	me	Un	IProtKB AC	Add UniPr	OTKB AC	Annotation No.
Kinac	kinase d1 (p	okd1)	P98161/PK	D1_HUMAN √ X			1
rtillas	pkd1		P98161/PK	D1_HUMAN √ X			1, 2
Substra	beta-catenir	1	P35222/CTM	NB1_HUMAN √ X			1, 0
	t120 beta-ca	atenin	Not normaliz	ed			2
						Add G	ene Normalization
		Gene N	ormalization		- ?		
Protein	Name	Ur	niProtKB AC	Add UniProtKB AC	Annotation No.		
Protein	kinase d1 (pkd1) QUniProt	P98161/PK Polycystin- Homo sapie	D1_HUMAN 1 precursor ens (Human)		1		
Kinase	pkd1	P98161/PK Polycystin- Homo sapie √ X	D1_HUMAN 1 precursor ens (Human)		1, 2		
Substrate	beta-catenin	P35222/CTI Catenin bet Homo sapio ✓ X	NB1_HUMAN a-1 ens (Human)		1, 3		
	t120 beta-catenin	Not normalia	red		2		
				Add G	ene Normalization		

In many cases the evidence for finding the species is not in the abstract, so checking on fulllength may be needed. For open access articles a link to full text is offered in the PubMed information section.

		PubMed Information		
22511927 ⁄	2012	Du C, Zhang C, Li Z, Biswas MH, Balaji KC	PLoS One	Full Text

In this example the abstract talks about *beta catenin* and *pkd1* in <u>prostate cancer</u> and uses <u>C4-2</u> <u>cell line</u> which is *human*. The source of these proteins can be confirmed by looking the source of beta catenin in the full-text.

Then click on the "check" for PDK1_HUMAN and CTNB1_HUMAN. These accessions should turn green. If you have many UniProtKB accession options you don't need to validate them all. If you found the correct one just check it. <u>Use the "x" only when all accessions are incorrectly assigned</u> for a given kinase/substrate.

	Gene Normalization											
Protein	Name	UniProtKB AC	Add UniProtKB AC	Annotation No.								
Kinase	kinase d1 (pkd1)	P98161/PKD1_HUMAN \checkmark X		1								
Killdse	pkd1	P98161/PKD1_HUMAN \checkmark X		1, 2								
Substrate	beta-catenin	P35222/CTNB1_HUMAN ✓ X		1, 3								
	t120 beta-catenin	Not normalized		2								
			Add G	ene Normalization								

Once you've finished you can download your result for your records, in a tab delimited format or BioC format.

Text Evidence											Back to	/iews 👻	Down	d 🚽 🛛 La	ayout 👻
		PubMed Info	rmation							Text E	vidence				
22511927 쇠	2012	Du C, Zhang C, Li Z, Biswa	as MH, Balaji KC		PLoS	One									
							1 TI - Beta-ca	tenin phos	phorylated	at threonin	ne 120 antag	qonizes ger	neration of	vive beta-ca	tenin by
		RLIMS-P Ann	otation				spatial local	ization in tra	ans-Golgi ne	twork .					
No. Kinas	se	Substrate	Site	Sentence	Comment	Validation									
kinase d1 (pk	±1)	beta catenin (beta-	Thr-120	4.7		1.4	2 AB - The st	ability and s	subcellular l	ocalization o	f beta-cater	iin , a prote	in that plays	s a major ro	le in cell
						###Text Eviden #PubMed Infor 22511 #RLIMS-P Anno No.	centri mation 927 2012 tation Kinase 1 kinase d1 (2 kinase d1 (3 kinase d1 (4 N/A	Du C, Zhan Substrate beta cater t120 beta- beta cater beta cater	PLoS One Site Thr-120 Thr-120 Thr-120 Thr-120 Thr	Comment	Validation Agree N/A Agree N/A	Sentence Our curren In human These in v TI - Beta-	nt study dei normal pro vitro and in catenin pho	monstrates state tissue vivo data u sphorylate	that ABC transe , the phosphor nveil a previous d at threonine to com prot
						#User Add Anno	otation	beta cater	1111-120,50	21-57,110-4.	Agree	whereas	the nuclear	beta-cater	IIII IIOIII PKD1-k
						Kinase	Substrate	Site	Comment	Sentence					
						#Gene Normali	zation								
						Protein	Name	UniProtKB	Add UniPr	Annotatio	n No.				
						Kinase	kinase d1 (P98161		1					
						Kinase	pkd1	P98161		2,3					
						Substrate	t120 beta	P35222	borile	1,3,4,5					
						austrate	tizo beta-	Not norma	inzeu	2					

Return to your original results list by selecting *View by Summary* and the PMID that has been validated is now checked in the table

Summary	Show all annotations 🚯			View by Summa	ry - Download -
Show Selected	PubMed ID \$	Protein Kinase 🗢	Phosphorylated Protein (Substrate)	No. of Sentences \$	Text Evidence/Curation
	23613946	beta-tc6 cell	fak (y576), fak (y397), erk (t202/y204), fak	1	₫ 1
	22511927 🗸	kinase d1 (pkd1)	beta catenin, t120 beta-catenin	5	¢1
	22037766	mink1	prickle	1	¢ı

Always indicate wrong annotation.

Example: PMID 23613946

Summary	Show all annotations 🚯			View by Summa	ry - Download -
Show Selected	PubMed ID \$	Protein Kinase 🔶	Phosphorylated Protein (Substrate) \$	No. of Sentences \$	Text Evidence/Curation
	23613946	beta-tc6 cell	fak (y576), fak (y397), erk (t202/y204), fak	1	∠ 1
	22511927 🗸	kinase d1 (pkd1)	beta catenin, t120 beta-catenin	5	¢1
	22037766	mink1	prickle	1	¢ı

			PubMed Infor	mation				Text Evidence
236	23613946 🖾 2013 Ngamjariyawat A, Turpaev K, Vasylovska		v K, Vasylovska.	PLoS One	F	ull Text		
RLIMS-P Annotation ?								1 TI - Co - culture of neural crest stem cells (NCSC) and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta- cell death .
No.	Kinase	e	Substrate	Site	Sentence	Comment	Validation	
1	beta-tc6 cell		fak (y576)	Tyr-576	11		νx	Z AD-PURPUSE:
2	beta-tc6 cell		fak (y397)	Tyr-397	11		√X	3 Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta- cells.
3	beta-tc6 cell		erk (t202/y204)	Thr-202, Tyr-204	11		√X	4 Recently we have shown that co-transplantation of neural crest stem cells (NCSCs) together with the
4	beta-tc6 cell fak		fak		11		vх	islet cells improves transplantation outcome .
						Ad	5 The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta- cell death.	
			Gene Normaliza	tion			+ ?	
Pro	tein 1	Name	UniProtKB	AC	Add UniProtk	BAC Anr	notation No.	6 PROCEDURES :
Kin	ase beta-tc6	cell	Not normalized			1,	2, 3, 4	7 Beta-TC6 and NCSC cells were cultured either alone or together , and either with or without cell culture
			Q658W2/Q658W2_H	IUMAN 🗸 🗙				inserts .
	fak		Q59GM6/Q59GM6_H	IUMAN 🗸 X		4		8 The cultures were then exposed to the pro-inflammatory cytokines IL-1beta and IFN-gamma for 48 hours followed by analysis of cell death rates (flow cytometry) _ nitrite production (Griess reagent)
Sub	strate		Q05397/FAK1_HUM	AN 🗸 X				protein localization (immunofluorescence) and protein phosphorylation (flow cytometry) .
	fak (y397	fak (y397) Not normalize						9 RESULTS :
	fak (y576)	Not normalized			1		10 We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell
	erk (t202)	/y204)	Not normalized			3		death , but not when separated by cell culture inserts .

The information in this abstract about phosphorylation could be summarized as

fak is phosphorylated at Tyr-576 fak is phosphorylated at Tyr-397 erk is phosphorylated at Thr-202 and Tyr-204

Although annotation of phosphorylation of fak and erk is correct in RLIMS-P output, the kinase information on beta-TC6 is not, as it is not a protein but the cell type. Check on X on validation column for all wrong statements. And use Add Annotation to enter the correct information.

	RLIMS-P Annotation ?										
No.	Kinase	Substrate	Site	Sentence	Comment	Validation					
1	beta-tc6 cell	fak (y576)	Tyr-576	11		🗸 🗶					
2	beta-tc6 cell	fak (y397)	Tyr-397	11		√ X					
3	beta-tc6 cell	erk (t202/y204)	Thr-202, Tyr-204	11		√ X					
4	beta-tc6 cell	fak		11		√ X					
	Add Annotation										

And use Add Annotation to enter the correct information.

User Added Annotation									
No.	Kinase	Substrate	Site	Sentence	Comment	Delete			
5	Kinase	fak	Tyr-576	11	Comment	Ē			
6	Kinase	fak	Tyr-397	11	Comment	<u> </u>			
7	Kinase	erk	Thr-202, Tyr-204	11	Comment	Ē			

Add Annotation

Now the gene normalization step for fak and erk. The abstract describes endogenous beta-TC6 cell line which is murine (mouse). So fak and erk should be mouse entries.

		Gene Normalization		
Protein	Name	UniProtKB AC	Add UniProtKB AC	Annotation No.
Kinase	beta-tc6 cell	Not normalized		1, 2, 3, 4
	fak	Q05397 ✓ X Q59GM6 ✓ X Q658W2 ✓ X		4
Substrate	fak (y397)	Not normalized		2
	fak (y576)	Not normalized		1
	erk (t202/y204) QUniProt	Not normalized		3
			A	dd UniProtKB Entry

Use the UniProt icon to search the database. Modify search box keywords in UniProt to include mouse.

In this example erk was not normalized as it represents a family of proteins. The full text describes use of antibodies for Phospho-ERK1/2(T202/Y204) so we don't know which protein it is.

In the case of fak, a search for fak and mouse yields fak1 and fak2 (Pyk2). Again here they use and antibody Y-397 which may react with fak2 (according to Invitrogen antibody specifications).

From <u>http://tools.invitrogen.com/content/sfs/manuals/44625G_Rev1108.pdf</u>: "Human FAK. Mouse, frog and fly FAK have not been tested but are expected to react. This antibody will cross-react with the corresponding autophosphorylation site on Proline-rich/Ca2+-activated tyrosine kinase (Pyk2), [pY402]. FAK [pY397] polyclonal antibody (Cat. #44-624G) does not cross-react with Pyk2."

In addition, the other antibody used for Y576 describes that it cross react with other activated receptors

Phospho-FAK (Tyr576/577) Antibody detects endogenous levels of FAK only when phosphorylated at tyrosine 576/577. This antibody may cross-react with other activated receptor tyrosine kinases.

Therefore, we cannot normalize in this case.

Go back to Summary to continue with next PMID (note that now two PMIDs are checked)

Summary	Show all annotations 🚯			View by Summa	ry - Download -
Show Selected	PubMed ID \$	Protein Kinase 🗢 🗢	Phosphorylated Protein (Substrate) \$	No. of Sentences \$	Text Evidence/Curation
	23613946 🗸	beta-tc6 cell	fak (y576), fak (y397), erk (t202/y204), fak	1	Æ
	22511927 🗸	kinase d1 (pkd1)	beta catenin, t120 beta-catenin	5	¢1
	22037766	mink1	prickle	1	∕∠ı

Annotation of PMID 22037766

Summary	Show all annotations 🚯			View by Summa	ry - Download -
Show Selected	PubMed ID \$	Protein Kinase 🗢	Phosphorylated Protein (Substrate) \$	No. of Sentences \$	Text Evidence/Curation
	23613946 🗸	beta-tc6 cell	fak (y576), fak (y397), erk (t202/y204), fak	1	∠ 1
	22511927 🗸	kinase d1 (pkd1)	beta catenin, t120 beta-catenin	5	Æı
	22037766	mink1	prickle	1	

The phosphorylation information in this abstract can be summarized as:

Prickle phosphorylated by Mink1 on Thr

			PubMed Infor	mation			
22037766	⁄ 2012 Jan	Daul	lat AM, Luu O, Sing	A, Zhang L, W	a Mol C	ell Biol	Full Text
			RLIMS-P Anno	tation			?
No.	Kinase		Substrate	Site	Sentend	ce Com	ment Validation
1 ^{mink}	k1	prickle	9	Thr	5		√ X
							Add Annotation
			Cone Normaliz	ation.			
Protoin	Namo			AC	Add UniDr	of KR AC	
Kinasa	minkt	N	oni-TotRb	AC	Add Offer	UIND AC	Annotation No.
Killase	minkt	IN	lot normalized				
Substrate	prickle	N	lot normalized				1
						Add G	Sene Normalization
		PA	MID Mapping to I	JniProtKB			2
Pr	otein AC/ID		Protein	Name		Org	anism Name
D21/V/C2/D2		cDNA FL	J16519 fis, clone N	T2RI3007684, h	ghly		
/ProClass UniP	rotKB/Swiss-Prot	similar to	Prickle-like protein	1		Homo s	apiens (Human)
		cDNA FI	J16528 fis clone O	CBBE2010841	highly		
B3KVG6/B3 /ProClass UniP	3KVG6_HUMAN httk://www.second	similar to	p Prickle-like protein	1	inginy	Homo s	apiens (Human)
077000-55		BioThesau	urus				
/ProClass UniP	RICZ_HUMAN ProtKB/Swiss-Prot	BioThesau	ke protein 2 precurs	or		Homo s	apiens (Human)
Q8N4C8/MI	NK1_HUMAN	Misshap	en-like kinase 1			Homo	anione (Human)
/ProClass UniP	ProtKB/Swiss-Prot	BioThesau	urus			norno si	apiens (numan)
Q96MT3/PF /ProClass UniP	RIC1_HUMAN rotKB/Swiss-Prot	Prickle-li	ke protein 1 precurs	or		Homo s	apiens (Human)

In this case the information provided by RLIMS-P coincides with that of the abstract level information, so it can be checked. The residue is not mentioned in the abstract only that it is a Thr.

RLIMS-P Annotation									
No.	Kinase	Substrate	Site	Sentence	Comment	Validation			
1	mink1	prickle	Thr	5		√ X			
	Add Annotation								

Now to the normalization business. In this case, GenNorm (the program use for normalization) was not able to find a UniProt accession for the proteins in this abstract. However, there are some entries

suggested via the UniProtKB bibliography mapping service (meaning that some database link this PMID to the entries suggested). This is provide additional help in finding the correct entry. To confirm that the proteins are human as suggested by the mapping, you would need to go to full-text.

		Gene Normalization		+?
Protein	Name	UniProtKB AC	Add UniProtKB AC	Annotation No.
Kinase	mink1	Not normalized		1
Substrate	prickle	Not normalized		1

Add Gene Normalization

	PMID Mapping to UniProtKB	?
Protein AC/ID	Protein Name	Organism Name
B3KVG3/B3KVG3_HUMAN /ProClass UniProtKB/Swiss-Prot	cDNA FLJ16519 fis, clone NT2Rl3007684, highly similar to Prickle-like protein 1 BioThesaurus	Homo sapiens (Human)
B3KVG6/B3KVG6_HUMAN /ProClass UniProtKB/Swiss-Prot	cDNA FLJ16528 fis, clone OCBBF2010841, highly similar to Prickle-like protein 1 BioThesaurus	Homo sapiens (Human)
Q7Z3G6/PRIC2_HUMAN /ProClass UniProtKB/Swiss-Prot	Prickle-like protein 2 precursor BioThesaurus	Homo sapiens (Human)
Q8N4C8/MINK1_HUMAN /ProClass UniProtKB/Swiss-Prot	Misshapen-like kinase 1 BioThesaurus	Homo sapiens (Human)
Q96MT3/PRIC1_HUMAN /ProClass UniProtKB/Swiss-Prot	Prickle-like protein 1 precursor BioThesaurus	Homo sapiens (Human)

Consulting the full text, in *Materials and Methods* the information about the species, which is human, can be confirmed. Prickle refers to two proteins Prickle 1 and Prickle 2:

"cDNA for human PRICKLE1 and PRICKLE2"

"The cDNA for Mink1 was obtained from clone MGC:21111."

So we know that we can add the corresponding accessions in the normalization table. Since in this case they define that they are looking into both Prickle proteins you can add both accession in the box. You can ignore accession for redundant entries.

Gene Normalization								
Protein	Name	UniProtKB AC	Add UniProtKB AC	Annotation No.				
Kinase	mink1	Not normalized	Q8N4C8,	1				
Substrate	prickle	Not normalized	Q96MT3, Q7Z3	1				

PMID Mapping to UniProtKB							
Protein AC/ID	Protein Name	Organism Name					
B3KVG3/B3KVG3_HUMAN /ProClass UniProtKB/Swiss-Prot	cDNA FLJ16519 fis, clone NT2Rl3007684, highly similar to Prickle-like protein 1 BioThesaurus	Homo sapiens (Human)					
B3KVG6/B3KVG6_HUMAN /ProClass UniProtKB/Swiss-Prot	cDNA FLJ16528 fis, clone OCBBF2010841, highly similar to Prickle-like protein 1 BioThesaurus	Homo sapiens (Human)					
Q7Z3G6/PRIC2_HUMAN /ProClass UniProtKB/Swiss-Prot	Prickle-like protein 2 precursor BioThesaurus	Homo sapiens (Human)					
Q8N4C8/MINK1_HUMAN /ProClass UniProtKB/Swiss-Prot	Misshapen-like kinase 1 BioThesaurus	Homo sapiens (Human)					
Q96MT3/PRIC1_HUMAN /ProClass_UniProtKB/Swiss-Prot	Prickle-like protein 1 precursor BioThesaurus	Homo sapiens (Human)					

Go back to summary view. After all PMIDs have been checked in the summary result page, then your task is done.

You can download all the curated data by selecting in the upper right menu My Curation option

CeciA | My Curation | Sign out

And then select "Save Result"

Record end time.

Please record time intervals if you do the task in steps, as we need the total time.

Example Manual Task

Let's use as example the same PMIDs (23613946, 22511927, 22037766). This is one suggested workflow but you could use your own ideas for this part as long as in the end you provide a file with:

		UniProtKB		UniProtKB	Site (3 letter code-, sep
PMID	Kinase	Kinase	Substrate	Substrate	commas)

- Go to Pubmed <u>http://www.ncbi.nlm.nih.gov/pubmed</u>
- Record start time
- Enter list of PMIDs separated by commas

Publiced.gov US National Library of Medicine National Institutes of Health	PubMed 23613946 22511927 22037766[uid] RSS Save search Advanced 	Search Help		
Show additional filters	Display Settings: Summary, Sorted by Recently Added Send to: Send	Filters: Manage Filters		
Article types More	Results: 3	3 free full-text articles in PubMed		
Text availability	Co-culture of neural crest stem cells (NCSC) and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death.	Co-culture of neural crest stem cells (NCSC) and insulin producing beta-1 [PLoS One. 2013]		
Free full text available Full text available	Ngamjariyawat A, Turpaev K, Vasylovska S, Kozlova EN, Welsh N. PLoS One. 2013 Apr 17;8(4):e61828. doi: 10.1371/journal.pone.0061828. Print 2013.	Beta-catenin phosphorylated at threonine 120 antagonizes generation of a [PLoS One. 2012]		
Publication	PMID: 23613946 [PubMed - in process] Free PMC Article Related citations	Mink1 regulates β-catenin-independent Wnt signaling via Prickle phost [Mol Cell Biol. 2012]		
5 years	Beta-catenin phosphorylated at threonine 120 antagonizes generation of active beta-catenin	See all (3)		
Custom range	 by spatial localization in trans-Golgi network. Du C, Zhang C, Li Z, Biswas MH, Balaji KC. 	Find related data		
Species Humans Other Animals	PLoS One. 2012;7(4):e33830. doi: 10.1371/journal.pone.0033830. Epub 2012 Apr 12. PMID: 22511927 [PubMed - indexed for MEDLINE] Free PMC Article Related citations	Database: Select -		
Clear all	Mink1 regulates β-catenin-independent Wnt signaling via Prickle phosphorylation.			
Show additional filters	 Daulat Aw, Luu O, Sing A, Zhang L, Wrana JL, MCNelli H, Winkibauer R, Angers S. Mol Cell Biol. 2012 Jan;32(1):173-85. doi: 10.1128/MCB.06320-11. Epub 2011 Oct 28. PMID: 22037766 [PubMed - indexed for MEDLINE] Free PMC Article 	Search details		

• In Display settings select view Abstract or Abstract (text) and Apply

Display Settings: Summary, Sorted by Recently Added Send to: Format Sort by Re Summary Recently Added Summary (text) Pub Date ing beta-TC6 cells results in Abstract First Author 1. -cell death. Abstract (text) Cast Author MEDLINE Journal 2013. ◯XML Title PMID List Apply

Beta-catenin phosphorylated at threonine 120 antagonizes generation of active beta-catenin

 by spatial localization in trans-Golgi network. Du C, Zhang C, Li Z, Biswas MH, Balaji KC. PLoS One. 2012;7(4):e33830. doi: 10.1371/journal.pone.0033830. Epub 2012 Apr 12. PMID: 22511927 [PubMed - indexed for MEDLINE] Free PMC Article Related citations

Now you have all the abstracts and you can read and find the information about protein phosphorylation

- You can download all abstracts as text file if you prefer, but links to full text will be missing.
- Open template spreadsheet and complete the information requested.

In the end you should come up with a file that looks like this one

PMID	Kinase	UniProtKB Kinase	Substrate	UniProtKB Substra	Site (3 letter code-, separated by comm	Comment	Sentence
22511927			beta-catenin	P35222	Thr-120,Ser-37,Thr-41		
	Protein Kinase D1 (PKD1)	P98161	ABC	P35222	Thr-120	ABC is active beta-catenin	Our current study demonstrates that AE
							These in vitro and in vivo data unveil a p
23613946			fak		Tyr-397	cannot be normalized, use an	This occurred in parallel with (i) augmen
			erk		Thr-202,Tyr-204	cannot be normalized, use an	This occurred in parallel with (i) augmen
			fak		Tyr-576	cannot be normalized, use an	This occurred in parallel with (i) augmen
22037766	mink1	Q8N4C8	prickle	Q96MT3,Q7Z3G6	Thr	pricke include prickle 1 and p	We show that Mink1 phosphorylates Pr

• When you are done with the PMID list. Record end time.