RLIMS-P Website Help Document

Table of Contents

Introduction	1
RLIMS-P architecture	2
RLIMS-P interface	2
Login	2
Input page	3
Results Page	4
Text Evidence/Curation Page	9

URL: http://annotation.dbi.udel.edu/text_mining/rlimsp2/

Introduction

RLIMS-P (Figure 1) is a rule-based text-mining program specifically designed to extract protein phosphorylation information on protein kinases, substrates and phosphorylation sites from biomedical literature (Hu *et al.*, 2005). **RLIMS-P** currently works on PubMed abstracts, but it will be extended to open access full text articles soon. **RLIMS-P** allows users to quickly find the relevant literature for phosphorylated proteins and their kinases, thereby facilitating the study of kinase-substrate networks.

Figure 1: RLIMS-P overview.

RLIMS-P architecture

The RLIMS-P website consists of two parts: **1**) a back-end database and **2**) a web interface (Figure 1). Phosphorylation information is first extracted from Medline abstracts by RLIMS-P version 2.0, and then processed and stored in the database for easy and fast later retrieval. The web interface enables users to search for phosphorylation information using keywords or a list of PMIDs. The results (kinase, substrate, site) are displayed in sortable tables, which are downloadable for further research.

Figure 2: RLIMS-P system architecture

RLIMS-P interface

Login

To edit and export curated RLIMS-P results, users need to login (Figure 3, 1). In order to login for the first time, users need to sign up (Figure 3, 2) by entering their e-mail, name and affiliation (Figure 3, 3). Once logged in, the heading will appear as in Figure 4.

Last updated 08/28/2013

Figure 4: Appearance of heading after login

The new website allows the input of keywords or phrases (Figure 5, 1) that can be combined using Boolean operators. This input is used to query PubMed documents, and relevant documents are retrieved for processing by RLIMS-P. Alternatively a list of PMIDs (Figure 5, 2), delimited by comma, space, or new line can be entered. Users can enter up to 200 PMIDs per run. In both cases, clicking on Submit Query will retrieve the results, and clicking on Reset will empty the query box, so that a

different query can be entered.

RLIMS-P Search Form	
Enter Keywords (accepts Boolean operators (AND, OR, NOT)) "beta catenin" AND cancer Submit Query Res	∍et
Enter PubMed IDs (PMIDs) delimited by "," or space, e.g., 2108025, 1	6436437.
2 23412089 23406730 23400998 23397032 23396981 23396967	
Submit Query Reset	41
You can process up to 200 PMIDs per run. Sample output	

Figure 5: RLIMS-P input interface

Results Page

In short	
RLIMS-P Results: statistics, summary table with different views (kinase, substrate, PMID), access	
to text evidence, and table saving	

Return links

🛨 Previous Page 🛽	RLIMSP Home					Tester My Cura	tion Sign out
The latest 200 of 629 Documents RLIMS-P Click here to see full r	documents with potential positive=178 where Kina: esults. Note the processir	I phosphorylation are processed Save PN se=42, Substrate=154 and Site=39 ng time may be long due to the big amour	nt of PMIDs.	itatistics	View c	ptions	Save
Summary						View by Summary 👻	Save Table
Show Selected	Results Tal	DIE Protein Kinase	\$	Phosphorylated Protein (Substrat	te) 🗢	No. of Sentences *	Text Evidence
	22126602	flt3/itd-related, flt3/itd, flt3		beta-catenin		7	19**
	22369945	p21-activated kinase 1 (pak1), prot k299r	ein kinase a, pak1	beta-catenin		7	13P*
	22511927	kinase d1 (pkd1)		hate establish there bets establish		5	1 3**
	22025562	ck1alpha	RLIMS-	P annotation		3	(G)**
	22515442	pkm2, c-src, y333 beta-catenin		beta-catenin, pkm2		2	13/*
	Link to PubMed					Links to evidence	o text ce and

curation interface

Figure 6: Overview of the results page

Overview: The results page contains the search statistics and the results table (Figure 6). Users can customize their view of the information in the table and download their results from this page.

RLIMS-P Statistics: The new RLIMS-P results page presents detailed statistics on the documents with potential phosphorylation information (those containing a phosphorylation-related trigger word) and those with phosphorylation information according to RLIMS-P processing (Figure 7). For convenience, only the results for the latest 200 PMIDs are shown for a keyword search, but the user can choose to access the full result set.

Figure 7: RLIMS-P Statistics

Results table:

(i) Columns in the results table: The results table contains the following columns. Note that the order and appearance of these columns will vary depending on a variety of user-settable options (see below).

Show Selected: Allows the user to select which annotation lines to display. Annotation lines are selected by clicking on the corresponding check boxes and then on "Show Selected" (Figure 8). annotation lines by clicking on the corresponding check boxes and then on Show Selected.

Show Selected	Pu led ID	Pro	tein Kinase	Phosphorylated Protein (Substrate)	Phosphorylation Site S	No. of Text Evidence	
v	Show All	PubMed ID	Protein Kinase	Phosphorylated Protein (Substrate)	Phosphorylation Site	No. of Sentences	Text Evidence
			ckiepsilon	ror2	Ser, Thr	1	18*
			ckiepsilon	ckiepsilon	Ser, Thr	1	19*
		15375164	ror2	ror2	Туг	1	13**
				g protein -coupled receptor kinase 2	Туг	1	13*
				ror2	Ser, Thr, Tyr	1	13"
V			gsk-3beta	beta-catenin	Ser-45	1	13**
			ck1	beta-catenin	Ser-45	1	19*
		10051714	gsk-3		Ser-45	1	13*
		12051714		beta-catenin	Ser-33, Ser-37, Thr-41	1	19*
				wnt	Ser, Thr	1	13*
				beta-catenin	Ser, Thr	1	13**
				beta catenin	Ser-33, Ser-37, Thr-41, Ser-45	1 BP*	

Figure 8: Displaying desired annotation lines using the Show Selected column

PubMed ID: Displays the PubMed ID of each RLIMS-P positive document. Clicking on the ID will link to the PubMed abstract.

Protein Kinase: Kinases identified by RLIMS-P are shown in green.

Phosphorylated Protein (Substrate): Proteins determined by RLIMS-P to be phosphorylated substrates are shown in blue.

Phosphorylation Site: Phosphorylation sites identified by RLIMS-P are shown in red. This column is not included in the Summary view (see below).

No. of Sentences: Indicates the number of sentences from the document that contain evidence for that line of annotation. Clicking on the number links to the Text Evidence/Curation page for that line of annotation (Figure 9).

View	by Substr	ate s	how all annotations 🚯									View by Substrate	- Save Table
Show	Selected	Ph	osphorylated Protein (S	ubstrate)		Pub	Med ID	φ.		Protein Kinase	Phosphorylation Site	No. of Sentences +	Text Evidence
						221	26602		flt3/itd-	related	Tyr	1	13/**
						223	69945		p21-ac kinase	tivated kinase 1 (pak1), protein a	Ser-675	1	13°°
		beta-ca	beta-catenin			223	69945		pak1 k	299r	Thr-423	1	13**
					22515442			pkm2,	c-src	Tyr-333	1	13°	
						221	26602		flt3/itd		Tyr-654	1	13"
						223	69945		p21-ac	tivated kinase 1 (pak1)	Ser-663	2	137
						221	26602		613		Tur 654		100
ext Evid	lence											Back to Views v Dov	vnload - Layout -
			PubMed Informa	tion							Text Evidence	,	
22369945	👍 2012 Mar	16 Par	k MH, Kim DJ, You ST, Lee CS, Kir	m H Bioch	em Biophy	s Res Comm	un .	Ful	Text				
										6 Mutagenesis followed by a kinase	e assay revealed that PAK1 phos	phorylated \$663 in addition to \$67	5 , and an anti-phosph
			RLIMS-P Annota	tion						beta-catenin (S663) antibody dete	ected the phosphorylation of S6	3 downstream of PAK1 in various h	uman colon cancer ce
No.	Kinase		Substrate	Site	S	entence	Comment	Va	lidation				
1 p21	-activated kinase 1	(pak1) b	beta-catenin	Ser-663	6	.9			XV	9 Taken together , these results pr	ovide evidence that PAK1 specific	ally phosphorylates beta-caten	in at \$663 and that thi
0.0							A	dd An	notation	phosphorylation is essential for	r the PAK1 -mediated transcriptional	activation of beta-catenin .	
											Salactidasalact 🗸 ki		obosobo kerovorda
Destate			Gene Normalizat	tion		d d l la IDa a N/I							
Protein	Nam	e	UniProtKB A	6	A	da UniProtki	BAG AF	inotat	ION NO.				
Kildse	paki		Not normalized										
Jubstrate	beta-catenin		Not normalized					1					
							Add Gene	Norma	lization				
			PMID Mapping to Uni	iProtKB									
Pr	otein AC/ID		Protein Nam	e		(Organism	Name	9				
ProClass Units	1_HUMAN	Serine/thr	reonine-protein kinase PAK 1 rus			Homo s	apiens (Hur	nan)					
SWYA6/CT	BL1_HUMAN	Beta-cate	enin-like protein 1 rus			Homo s	apiens (Hur	nan)					

Figure 9: Clicking on the number of sentences displays the Text Evidence page for that line of annotation

Text Evidence/Curation: Clicking on the ^{IPP} icon provides access to the RLIMS-P text evidence and editing/curation page for the entire title and abstract of the document indicated on that line of annotation (see Text Evidence/Curation section below).

(*ii*) **Column sorting:** Each column in the results table can be sorted based on ascending or descending numerical or alphabetical by clicking on the arrows next to the column headings (Figure 10).

Show Selected

Figure 10: Arrows next to the column headings can be used to sort the results

(*iii*) *View Options:* Users can organize the display in the results table according to their interests using the "View by" menu (Figure 6, View options).

View by Summary: The default view of the RLIMS-P results table is the Summary view, in which all of the kinases and phosphorylated substrates identified in a particular document are summarized in a single line of annotation (Figure 11). Documents containing kinase, substrate and site information are listed first. Phosphorylation site information is not presented in this view.

The latest 200 of 629 di Documents RLIMS-P pi Click here to see full res	RLIMSP Home ocuments with potentia ositive=178 where Kina sults. Note the process	I phosphorylation are processed Save PMIDs se=42, Substrate=164 and Site=39 ing time may be long due to the big amount of PMIDs.		Tester My Cur	ration Sign out
Summary				View by Summary	- Save Table
Show Selected	PubMed ID 🔹	Protein Kinase 🔹 🕈	Phosphorylated Protein (Substrate) +	No. of Sentences 🗢	Text Evidence
	22126602	fit3/itd-related, fit3/itd, fit3	beta-catenin	7	1 3°
	22369945	p21-activated kinase 1 (pak1), protein kinase a, pak1 k299r	beta-catenin	7	10**
	22511927	kinase d1 (pkd1)	beta catenin, t120 beta-catenin	5	1 3"
	22025562	ck1alpha	c-myc, beta-catenin	3	19**
	22515442	pkm2, c-src, y333 beta-catenin	beta-catenin, pkm2	2	tar-

Figure 11: View by Summary

View by PMID: This view is document-centric, grouping together all of the annotation lines for a particular document (Figure 12). Unlike the Summary view, each line of annotation in the PMID view consists of a single kinase, its substrate, and the corresponding phosphorylation site(s). Columns are left blank if kinase, substrate, and/or site information was not obtained from the document.

View by PMID	Show all annotati	ons 💁			View by PMID	- Save Table
Show Selected	PubMed ID	Protein Kinase +	Phosphorylated Protein (Substrate)	Phosphorylation Site	No. of Sentences +	Text Evidence
		fit3/itd-related	beta-catenin	Tyr	1	63**
	22126602	fit3/itd	beta-catenin	Tyr-654	1	£3#*
		fit3	beta-catenin	Tyr-654	1	£3**
		p21-activated kinase 1 (pak1), protein kinase a	beta-catenin	Ser-675	1	13**
10	22369945	pak1 k299r	beta-catenin	Thr-423	1	13*
		p21-activated kinase 1 (pak1)	beta-catenin	Ser-663	2	13**

Figure 12: View by PMID

View by Kinase: The view is kinase-centric, grouping together information for each unique kinase mentioned in the document set (Figure 13). Note that we are still working on improving the standardization of protein names, and therefore in some cases, if a kinase is referred to by multiple names, all mentions of the kinase will not be collected into a single group. Within a group, each line of annotation shows an individual substrate of the kinase, the phosphorylation site(s), and the PMID for the document containing the evidence for that annotation. Substrate and/or site columns will be left blank if that information was not obtained from a particular document.

Last updated 08/28/2013

View by Kinas	e Show all annotations 0							View by Kinase	Save Table
Show Selected	Protein Kinase	٥	PubMed ID	۰	Phosphorylated Protein (Substrate)	٠	Phosphorylation Site +	No. of Sentences +	Text Evidence
877	kinase d1 (pkd1)		22511927		beta catenin		Thr-120	2	EP*
1	hindse er (phar)		22511927		t120 beta-catenin		Thr-120	1	19**
171	chtainha		22025562		с-тус		Ser-252	1	13P
	Сктарла		22025562		beta-catenin			1	13*
101	ask 2bota		21496192		beta-catenin		Ser-45	1	13*
	gan-Joela		21837368		beta-catenin			1	13°

Figure 13: View by Kinase

View By Substrate: This view is substrate-centric, grouping together information for each unique substrate mentioned the document set (Figure 14). Note that we are still working on improving the standardization of protein names, and therefore in some cases, if a substrate is referred to by multiple names, all mentions of the substrate will not be collected into a single group. Within a group, each line of annotation shows an individual kinase for the substrate, the phosphorylation site(s), and the PMID for the document containing the evidence for that annotation. Kinase and/or site columns will be left blank if that information was not obtained from a particular document.

View by Substr	ate Show all annotations						View by Substrate	Save Table
Show Selected	Phosphorylated Protein (Substrate)	٠	PubMed ID	٠	Protein Kinase	Phosphorylation Site	No. of Sentences +	Text Evidence
			22126602		fit3/itd-related	Tyr	1	13**
			22369945		p21-activated kinase 1 (pak1), protein kinase a	Ser-675	1	13 ²⁰
	beta-catenin		22369945		pak1 k299r	Thr-423	1	13"
			22515442		pkm2, c-src	Туг-333	1	1 32
			22126602		fit3/itd	Tyr-654	1	GP
			22369945		p21-activated kinase 1 (pak1)	Ser-663	2	GP*
			22126602		fit3	Туг-654	1	137"
			22173096		pak4	Ser-675	1	137
			23076981		glycogen synthase kinase-3beta (gsk-3beta), kinase casein kinase 1alpha (ck1alpha)	Ser-33, Ser-37, Thr-41, Ser-45	1	Lio"

Figure 14: View by Substrate

(*iv*) *Expanded RLIMS-P results:* Clicking on the \bigcirc icon will expand the table to show the full RLIMS-P results, including information that is partially redundant (as is the case for the annotation in the dashed box in Figure 15). This option is available for all of the table arrangements described in the previous section.

22946057	ck1	wnt3a	Ser, Thr	1	G.
22946057	fyn, src	wnt3a	Tyr	1	13 **
	fyn, src	wnt3a	Туг	1	læ.
22946057	ck1	wnt3a	Ser, Thr	1	13°°

Show all annotations \bigcirc \rightarrow Click to show expanded annotation

Figure 15: Expanded annotation

(v) Downloading the results table: Clicking on the Download button will create a comma-delimited file containing the PMID, kinase, substrate, and site information and the associated evidence sentences (Figure 16). The order of the information in the file will vary depending on the view from which is was downloaded.

View by PMID	Show all annotation	ns O							View by PMID	+ Download +			
Show Selected	PubMed ID +		Protein Kinase	٠	Phosphorylated	Protein (Substra	te) •	Phosphorylation Site	No. of Sentences	Text Evidence/Curatio	n		
		fit3/itd-relat	itd-related		beta-catenín			Tyr	1	1/2			
0	221206002	feg.fed	PMID	Kinase	Substrate	Site	Sent	tence					
	22120002	intaritu	22126602	flt3/itd-relat	beta-catenin	Tyr	TI - ۱	Y654 of beta-cat	enin is essential	for FLT3/ITD-relate	d tyrosine p	phorylation and nucle	
		fit3	22126602	flt3/itd	beta-catenin	Tyr-654	In th	ne experiments u	using COS-7 cells	expressing FLT3/IT	D 🤊 🛄 📶 nu	tant beta-catenin , FL	
			p21-activat	22126602	flt3	beta-catenin	Tyr-654	In vi	tro kinase assay	s , using recomb	inant FLT3 and biot	ih,oeta-ca	tenin peptide includir
		kinase a	22126602		beta-catenin	Tyr	Tyro	sine phosphoryl	ation of beta-ca	tenin affects the ce	II adnesion , mig	ration , and gene tran	
0	22369945	pak1 k299r	22126602		beta-catenin	Tyr	Thes	se results explair	how FLT3/ITD a	affects the tyrosine	phosphorylatio	n, nuclear localization	
			22126602		beta-catenin	Tyr-654	Pror	moter -reporter a	assays demonstr	ated that Y654 pho	sphorylation of	beta-catenin was clos	
			p21-activat	22126602		beta-catenin	Tyr-654	Targ	eting Y654 phos	phorylation may	lead to the develo	pment of novel	approaches to therap
			22369945	p21-activate	beta-catenin	Ser-675	The	phosphorylation	status of beta-	catenin determines	its fate and affe	cts its cellular function	
			22369945	pak1 k299r	beta-catenin	Thr-423	Activ	ve PAK1 T423E b	out not inactive F	AK1 K299R interac	ted with and ph	osphorylated beta-cat	
			22369945	p21-activate	beta-catenin	Ser-663	Mut	agenesis followe	ed by a kinase as	say revealed that P	AK1 phosphoryl	ated S663 in addition	
			22369945	p21-activate	beta-catenin	Ser-663	Take	en together , the	se results provid	le evidence that PA	K1 specifically p	hosphorylates beta-ca	
			22369945		beta-catenin	Ser-663	TI - F	Phosphorylation	of beta-catenin	at serine 663 regul	ates its transcrip	tional activity .	
			22369945		beta-catenin	Ser-663	Furt	hermore , the W	/nt3a -stimulate	d S663 phosphoryla	tion was inhibit	ed by the PAK1-specif	
			22369945	p21-activate	d kinase 1 (p	ak1),protein	The	phosphorylation	n status of beta-	catenin determines	its fate and affe	cts its cellular function	
			22369945		beta-catenin		In th	ne present study	, we explored th	ne PAK1-specific ph	osphorylation si	te(s) in beta-catenin .	

Figure 16: Downloading the results table

Text Evidence/Curation Page

In short

RLIMS-P Text Evidence/Curation page: statistics, text evidence, curation interface (including PubMed information, RLIMS-P annotation, gene normalization, and PMID mapping to UniProtKB), and download options Accessing the Text Evidence/Curation Page: Clicking on the ^{IIII} icon in the results table provides access to the RLIMS-P text evidence and editing/curation page for the entire title and abstract of the document indicated on that line of annotation (Figure 6). Clicking on the number in the "No. of Sentences" column of the results table provides access to the text evidence and editing/curation page for that line of annotation only (Figure 6, Figure 9).

Returning to the results table: From the Text Evidence/Curation page, users can return to the Results page by choosing a viewing option (Summary, PMID, Kinase, or Substrate) from the Back to Views menu (Figure 17).

Tex	t Eviden	ce							Back to Views	▼ Download	▼ Layout ▼
			PubMed Info	ormation					Summary		
22	126602 🛋	2012 Apr	Kajiguchi T, Katsumi A,	, Tanizaki R, K	iyoi H, Naoe '	Eur J Haema	atol		PMID		
_							1	TI - Y654 of beta-ca	^{te} Kinase	for FLT3/ITD-r	elated tyrosine
			RLIMS-P An	notation				phosphorylation and nucle	a	ı-catenin .	
No.	Kin	ase	Substrate	Site	Sentence	Comment Validat	tion		Substrate		
	flt3/itd-rela	ated	beta-catenin	Tyr			2	AB - beta-Catenin plays a	dual role as a key e	ffecter in the regula	ation of adherens
1	into into i ton	100	bota outonin		1	V)	5	junctions as well as a transc	riptional co-activator.		
2	2 flt3/itd beta-catenin		beta-catenin	Tyr-654	5	· · >	6				
							3	Tyrosine phosphorylation	of beta-catenin affect	cts the cell adhesio	n , migration , and
3	flt3		beta-catenin	Tyr-654	7	11	()	anno transcription in many	tunce of human car	noor colle includi	na acuto muoloid

Figure 17: The Back to Views menu on the Text Evidence/Curation page

RLIMS-P Statistics: Like the Results page, the Text Evidence/Curation page displays the RLIMS-P statistics for the current query (Figure 7).

Layout: Using the Layout menu, users can switch between a two-column (Figure 18) and one-column (Figure 19) layout of the Text Evidence/Curation page.

xt	Evidence								
				PubMed Informa	ation				
2212	26602 🖄	2012 Apr	Kajiguch	ni T, Katsumi A, Tani:	zaki R, Kiyoi	Eur J Haematol		full Text	
				RLIMS-P Annota	tion				
No.	Kinase Substrate Site Senter ft3/td-related beta-catenin Tyr 1					Sentence	Commer	t Validation	
2	fit3/itd	fit3/itd beta-catenin Tyr			/itd beta-catenin Tyr-654		beta-catenin Tyr-654 5		J √ X
3	fit3		beta-catenin		Tyr-654	7		VХ	
								Add Annotation	
				Gene Normaliza	tion				
Prot	ein N	lame		UniProtKB A	.C	Add UniProt	KB AC A	nnotation No.	
	fit3/itd-related	l i	Not norma	alized				1	
Kina	se fit3/itd		Not norma	alized				2	
	fit3	Not normalized 3		3					
Subst	rate beta-catenin		Not norma	alized				1, 2, 3	
							Add Gene	Normalization	

Figure 18: Two-column layout of the Text Evidence/Curation page

Tavé Eu	i de me												
lext Ev	laena	e						Back to Viev	vs 🔻	Download	Layout 👻		
					PubMed Information	ı					One Column		
2212660	2 ණ		2012 Apr		Kajiguchi T, Katsumi A, Tanizaki R, Kiyoi Eur J Haematol					Full Text	Two Column		
_					DI IMC D Assistation								
Nie	No. Kingana				RLIMS-P Annotation				Santanco Commont				
INO.	Kinase			hate estable	Substrate	T	Site	Sentence		ommeni	validation		
1	fit3/itd-related bet			beta-catenin		iyr	1				√ X		
2	fit3/ite	d		beta-catenin		Tyr-654	5				√ X		
3	3 fit3 be					Tyr-654	7				√ X		
											Add Annotation		
	Gene Normalization												
Prote	in	Name			UniProtKB AC			Add UniProt	KB AC	Ann	otation No.		
		fit3/itd-related		Not normalized						1			
Kinas	se	fit3/itd		Not normalized						2			
		fit3		Not normali	zed					3			
Substr	ate	beta-catenin		Not normali	zed					1, 2, 3			
										Add Ger	ne Normalization		
					Text Evidence								
1	TI - Y6	54 of beta-catenin is essential	for FLT3/ITD-re	elated tyrosine pho	osphorylation and nuclear local	ization of b	eta-catenin .						
2	AB - be	eta-Catenin plays a dual role as a	a key effecter in	n the regulation of ad	herens junctions as well as a trans	criptional co	-activator .						
3	Tyrosi tandem	ine phosphorylation of beta-on a duplication (FLT3/ITD-AML).	catenin affect	s the cell adhesion ,	migration , and gene transcription	in many type	es of human cancer cells ,	including acute	myeloid leu	ikemia cells with	FLT3 internal		

Figure 19: One-column layout of the Text Evidence/Curation page

Text Evidence: When accessed via the ^{IB**} icon in the results table, the Text Evidence section displays each sentence of the title and abstract with phosphorylation-related information highlighted. By default, kinase (green), substrate (blue), site (red), and phospho-keyword (black, underlined) evidence is highlighted (Figure 20). Users can customize the highlighting using the check boxes provided. When accessed via the number in the No. of Sentences column in the results table, the Text Evidence section will display only the sentences containing evidence for that line of annotation (Figure 9).

	Text Evidence
1	TI - Y654 of beta-catenin is essential for FLT3/ITD-related tyrosine phosphorylation and nuclear localization of beta-catenin .
2	AB - beta-Catenin plays a dual role as a key effecter in the regulation of adherens junctions as well as a transcriptional co-activator.
3	Tyrosine phosphorylation of beta-catenin affects the cell adhesion , migration , and gene transcription in many types of human cancer cells , including acute myeloid leukemia cells with FLT3 internal tandem duplication (FLT3/ITD-AML).
4	Here , we investigated the relationship between three tyrosine residues (Y86 , Y142 , and Y654) in beta-catenin and oncogenic FLT3/ITD kinase .
5	In the experiments using COS-7 cells expressing FLT3/ITD and Wt or mutant beta-catenin , FLT3/ITD phosphorylated Y654 , and this residue was essential for beta-catenin's nuclear localization by FLT3/ITD .
6	Promoter -reporter assays demonstrated that Y654 phosphorylation of beta-catenin was closely related to TCF transcriptional activity .
7	In vitro kinase assays, using recombinant FLT3 and biotinylated beta-catenin peptide including Y654 showed that FLT3 directly phosphorylated Y654 of beta-catenin.
8	These results explain how FLT3/ITD affects the tyrosine phosphorylation, nuclear localization, and transcriptional activity of beta-catenin.
9	Targeting Y654 phosphorylation may lead to the development of novel approaches to therapy for FLT3/ITD-AML.
10	> (c) 2012 John Wiley & ; Sons A/S. < /CopyrightInformation>/NNP
	Select/deselect: 🗹 kinase 🗹 substrate 🗹 site 🗹 phospho keywords

Figure 20: Text Evidence display

Curation Interface: The curation interface portion of the Text Evidence/Curation page allows the user to validate the RLIMS-P phosphorylation annotation and gene normalization. If there are any errors or omissions, the user can enter the correct information. The interface is divided into four sections: PubMed Information, RLIMS-P Annotation, Gene Normalization, and PMID Mapping to UniProt KB.

(i) PubMed Information: The PubMed information section displays the PMID, publication date, authors, and journal for the annotated document. Clicking on the PMID links to the PubMed record for the document (Figure 21A). For open access articles, the link to Full Text is also available (Figure 21B)

22357623 ⁄ 🗖	2012 Apr	Li P, Goto H, Kasahara K, Matsuyama M	Mol Biol Cell	Full Text	
	BubMed				
S National Library of Medicine ational Institutes of Health	Publied	Advanced			
iisplay Settings: 🖂 Abs	tract		<u>Send to:</u>		
ol Biol Cell. 2012 Apr;23(8):1	582-92. doi: 10.1091/mbc	:E11-10-0883. Epub 2012 Feb 22.	foration		
<u>i P, Goto H, Kasahara K, I</u>	Matsuyama M, Wang Z	<u>, Yatabe Y, Kiyono T, Inagaki M</u> .	reration.		
ivision of Biochemistry, Aichi	Cancer Center Research	Institute, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi 464-8681, Japan.			
	tors. These pairways	s are closely correlated in cell proliferation, but their interaction is largely un	known. Here		
e show that Chk1 is pho timulation. Nonphosphor as a reverse effect on th ne nucleus after serum s 90 RSK in serum-starve	tors. These partways sphorylated predomin ylated Chk1-Ser-280 r localization. Treatm imulation, whereas th d cells. In vitro analyse	s are closely correlated in cell proliferation, but their interaction is largely un lantly at Ser-280 and translocated from cytoplasm to nucleus in response t mutation attenuates nuclear Chk1 accumulation, whereas the phosphomin ent with p80 RSK inhibitor impairs ChK1 phosphorylation at Ser-280 and ac nese two phenomena are induced by the expression of the constitutively ac es indicate that p90 RSK stoichiometrically phosphorylates Ser-280 on Chk PubMed Information	known, Here o serum iic mutation cumulation at tive mutant of (1. Together		
ve show that Chk1 is pho timulation. Nonphosphor as a reverse effect on th he nucleus after serum s 90 RSK in serum-starve	1015. These partivelys sphorylated predomin ylated Chk1-Ser-280 r e localization. Treatme timulation, whereas th d cells. In vitro analyse	s are closely correlated in cell proliferation, but their interaction is largely un lantly at Ser-280 and translocated from cytoplasm to nucleus in response t mutation attenuates nuclear Chk1 accumulation, whereas the phosphomin ent with p80 RSK inhibitor impairs ChK1 phosphorylation at Ser-280 and ac nese two phenomena are induced by the expression of the constitutively ac es indicate that p90 RSK stoichiometrically phosphorylates Ser-280 on Chi PubMed Information Li P, Goto H, Kasahara K, Matsuyama M	known. Here o serum ic mutation cumulation at tive mutant of <1. Together Mol Biol Cell	Full Text	
e show that Chk1 is pho timulation. Nonphosphor as a reverse effect on th ne nucleus after serum s 90 RSK in serum-starve	1015. These pathways sphorylated Chk1-Ser-280 r e localization. Treatme timulation, whereas th d cells. In vitro analyse	a re closely correlated in cell proliferation, but their interaction is largely un lantly at Ser-280 and translocated from cytoplasm to nucleus in response t mutation attenuates nuclear Chk1 accumulation, whereas the phosphomir ent with p90 RSK inhibitor impairs Chk1 phosphorylation at Ser-280 and ac ness two phenomena are induced by the expression of the constitutively ac ess indicate that p90 RSK stoichiometrically phosphorylates Ser-280 on Chk PubMed Information Li P, Goto H, Kasahara K, Matsuyama M	known. Here o serum ic mutation cumulation at tive mutant of d. Together	Full Text	
we show that ChK1 is pho timulation. Nonphosphor mas a reverse effect on the he nucleus after serum s 1900 RSK in serum-starver 22357623	1015. Intest pathways sphorylated Chk1-Ser-280 r e localization. Treatme timulation, whereas th d cells. In vitro analyse	s are closely correlated in cell proliferation, but their interaction is largely un lantly at Ser-280 and translocated from cytoplasm to nucleus in response t mutation attenuates nuclear Chk1 accumulation, whereas the phosphomin ent with p90 RSK inhibitor impairs Chk1 phosphorylation at Ser-280 and ac sees two phenomena are induced by the expression of the constitutively ac es indicate that p90 RSK stoichiometrically phosphorylates Ser-280 on Chk PubMed Information Li P, Goto H, Kasahara K, Matsuyama M	known. Here o serum ic mutation cumulation at tive mutant of 1. Together . Mol Biol Cell	Full Text	
ve show that ChK1 is pho stimulation. Nonphosphor has a reverse effect on the henucleus after serum s 190 RSK in serum-starves 22357623 24 22357623 24 USC Stational Library of Med National Institutes of Health	2012 Apr phorylated predomin ylated Chk1-Ser-280 r le localization. Treatme d cells. In vitro analyse 2012 Apr PMC	s are closely correlated in cell proliferation, but their interaction is largely un lantly at Ser-280 and translocated from cytoplasm to nucleus in response t mutation attenuates nuclear Chk1 accumulation, whereas the phosphomin ent with p80 RSK inhibitor impairs Chk1 phosphorylation at Ser-280 and ac nese two phenomena are induced by the expression of the constitutively ac es indicate that p80 RSK stoichiometrically phosphorylates Ser-280 on Chk PubMed Information Li P, Goto H, Kasahara K, Matsuyama M 22357623[pmid] Save search Journal List Limits Advanced	known. Here o serum iic mutation cumulation at tiive mutant of (1. Together . Mol Biol Cell	Full Text	
ve show that Chk1 is pho timulation. Nonphosphor as a reverse effect on th he nucleus after serum s 90 RSK in serum-starver 3 222357623 US National Library of Med National Institutes of Health Display Settings: (2012 Apr phorylated Chk1-Ser-280 r le localization. Treatme timulation, whereas th d cells. In vitro analyse 2012 Apr PMC phore phore Summary	s are closely correlated in cell proliferation, but their interaction is largely un lantly at Ser-200 and translocated from cycloplasm to nucleus in response to mutation attenuates nuclear Chk1 accumulation, whereas the phosphomir ent with p00 RSK inhibitor impairs Chk1 phosphorylation at Ser-280 and ac nese two phenomena are induced by the expression of the constitutively ac es indicate that p90 RSK stoichiometrically phosphorylates Ser-280 on Chk PubMed Information Li P, Goto H, Kasahara K, Matsuyama M 22357623[pmid] Save search Journal List Limits Advanced	known. Here o serum is mutation cumulation at tive mutant of (1. Together Mol Biol Cell	Full Text	yout
ve show that ChK1 is pho timulation. Nonphosphor has a reverse effect on the he nucleus after serum s 900 RSK in serum-starver 3 222357623 2 US National Library of Med National Institutes of Health Display Settings: (P90 RSK arrange Ping Li, Hidemasa Inagaki	2012 Apr 2012 Apr 2012 Apr 2012 Apr PMC Summary <u>s Chk1 in the nu</u> Goto, Kousuke H	s are closely correlated in cell proliferation, but their interaction is largely un lantly at Ser-280 and translocated from cytoplasm to nucleus in response t mutation attenuates nuclear Chk1 accumulation, whereas the phosphomin ent with p80 RSK inhibitor impairs Chk1 phosphorylation at Ser-280 and ac nese two phenomena are induced by the expression of the constitutively ac es indicate that p80 RSK stoichiometrically phosphorylates Ser-280 on Chk PubMed Information Li P, Goto H, Kasahara K, Matsuyama M 22357623[pmid] Save search Journal List Limits Advanced cleus for monitoring of genomic integrity during cell prolife Kasahara, Makoto Matsuyama, Zhonghua Wang, Yasushi Ya	known. Here o serum iic mutation cumulation at tive mutant of (1. Together Mol Biol Cell <u>Seration</u> /atabe, Tohru Kiyono,	Full Text Gend to: S Filter	your (1) I gra
ve show that Ch41 is pho stimulation. Nonphosphor has a reverse effect on the he nucleus after serum s 900 RSK in serum-starver 3 22357623 22357623 22357623 20 US National Library of Med National Institutes of Health Display Settings: (P90 RSK arrange Ping Li, Hidemasa Inagaki Mol Biol Cell. 2012 A PMCID. PMC382783	2012 Apr a cells. In vitro analyse 2012 Apr 2012 Apr PMC cells. In vitro analyse pmc cells. In vitro analyse cells. In vitro analyse pmc cells. In vitro analyse cells. In vitro analyse	s are closely correlated in cell proliferation, but their interaction is largely un lantly at Ser-280 and translocated from cytoplasm to nucleus in response t mutation attenuates nuclear Chk1 accumulation, whereas the phosphomir ent with p90 RSK inhibitor impairs Chk1 phosphorylation at Ser-280 and ac nese two phenomena are induced by the expression of the constitutively ac ess indicate that p90 RSK stoichiometrically phosphorylates Ser-280 on Chk PubMed Information Li P, Goto H, Kasahara K, Matsuyama M 22357623[pmid] Save search Journal List Limits Advanced cleus for monitoring of genomic integrity during cell prolific Kasahara, Makoto Matsuyama, Zhonghua Wang, Yasushi Y 2–1592. doi: 10.1091/mbc.E11-10-0883	known. Here o serum ic mutation cumulation at tive mutant of 1. Together Mol Biol Cell <u>Seration</u> Yatabe, Tohru Kiyono,	Full Text	your (1) I gra

Figure 21: PubMed Information section of the curation interface

(*ii*) *RLIMS-P Annotation:* This section displays a table of the RLIMS-P phosphorylation annotation lines. The first five columns—No. (line number), Kinase, Substrate, Site, and Sentence (sentence numbers from which evidence was obtained)—present the same information as in the results table and are not modifiable by the user. The last two columns—Comment and Validation—accept user input. In the Validation column, the user can click the check mark (turns green when clicked) if the RLIMS-P annotation on that line is correct and the X (turns red when clicked) if the annotation is incorrect (Figure 22). In the Comment column, the user can enter free-text comments; for example, if the annotation is incorrect, the user can provide a brief explanation of what is wrong (Figure 23). Clicking on Add Annotation at the bottom of the table creates a User Added Annotation section, which allows the user to enter additional kinase, substrate, site, and/or text evidence information (Figure 24).

		RLIMS-P Ann	otation			
No.	Kinase	Substrate	Site	Sentence	Comment	Validation
1	p90 rsk	chk1	Ser-280	7, 8, 11		× X
2	atr	chk1	Ser-280	9		× X
3	chk1	chk1	Ser-296	9		🖌 X -
4	atr	chk1	Ser-345	9		🖌 X -
5		chk1	Ser-296, Ser-345	10		✓ X

Add Annotation

Figure 22: RLIMS-P Annotation section of the curation interface showing user validation

							1	II - P90
		RLIMS-P A	nnotation					cell prolif
No.	Kinase	Substrate	Site	Sentence	Comment	Validation	2	AB - The
1	p90 rsk	chk1	Ser-280	7, 8, 11		✓ X	-	is a senti
2	atr	chk1	Ser-280	9	Kinase sho	ould be p90 r	sk	c
3	chk1	chk1	Ser-296	9				C
4	atr	chk1	Ser-345	9				
5		chk1	Ser-296, Ser-345	10		✓ X		unknown

Figure 23: RLIMS-P Annotation section of the curation interface showing a user-entered comment

		RLIMS-P Ann	notation			
No.	Kinase	Substrate	Site	Sentence	Comment	Validation
1	p90 rsk	chk1	Ser-280	7, 8, 11		✓ ×
2	atr	chk1	Ser-280	9		× X
3	chk1	chk1	Ser-296	9		✓ X
4	atr	chk1	Ser-345	9		🗸 X -
5		chk1	Ser-296, Ser-345	10		✓ X
		User Added A	Annotation		Add	Annotation
No	Kinasa	Substrate	Sito	Sonto	ooo Comm	ont Doloto
NO	. runase	Substrate	Site	Senter	ice comm	ent Delete
7	Kinase	Substrate	Site	Sente	nce Comm	en 🔟
					Ad	d Annotation

Figure 24: Clicking on the Add Annotation link below the RLIMS-P Annotation table allows users to enter new lines of annotation

(iii) Gene Normalization: The Gene Normalization section displays suggested UniProtKB accession numbers (UniProtKB ACs) for the kinase and substrate proteins mentioned in the RLIMS-P annotation (Figure 24). This normalization is done using the cross-species gene normalization tool, GenNorm (http://ikmbio.csie.ncku.edu.tw/GN/). Clicking on the UniProtKB AC links to the UniProtKB record. Users can indicate that the mapping is correct by clicking on the check mark in the UniProtKB AC box (turns the box green) or incorrect by clicking on the 'X' (turns the box red). Mousing-over any line in the table causes a search UniProt icon to appear. Clicking on this icon queries UniProtKB using the protein name as it appeared in the text. If the user identifies a UniProtKB AC that corresponds to the protein name, it can be entered in the Add UniProtKB AC column.

Figure 24: Gene Normalization section of the curation interface

(iv) PMID Mapping to UniProt KB: The section displays a table with suggested UniProtKB ACs for the kinases and substrates obtained using a bibliography mapping service provided by the Protein Information Resource (pir.georgetown.edu). The information in this section can be used to assist in assigning UniProt KB ACs to the proteins mentioned in the RLIMS-P annotation and addition of these to the Gene normalization table. Each line provides the UniProtKB AC and ID (with links to the UniProtKB and iProClass records for the protein), the name of the protein as it appears in the UniProtKB record (with a link to Biothesaurus), and the organism name (Figure 25).

	PMID Mapping to UniProtKB	
Protein AC/ID	Protein Name	Organism Name
B4DDD0/B4DDD0_HUMAN /ProClass UniProtKB/Swiss-Prot	cDNA FLJ59449, highly similar to Serine/threonine-protein kinase Chk1 BioThesaurus	Homo sapiens (Human)
B4DT73/B4DT73_HUMAN /ProClass UniProtKB/Swiss-Prot	cDNA FLJ56409, highly similar to Serine/threonine-protein kinase Chk1 BioThesaurus	Homo sapiens (Human)
F5H7S4/F5H7S4_HUMAN /ProClass UniProtKB/Swiss-Prot	Serine/threonine-protein kinase Chk1 BioThesaurus	Homo sapiens (Human)
O14757/CHK1_HUMAN /ProClass UniProtKB/Swiss-Prot	Serine/threonine-protein kinase Chk1 BioThesaurus	Homo sapiens (Human)
Q15418/KS6A1_HUMAN /ProClass UniProtKB/Swiss-Prot	Ribosomal protein S6 kinase alpha-1 BioThesaurus	Homo sapiens (Human)

Figure 25: PMID Mapping to UniProtKB section of the curation interface

Downloading Text Evidence/Curation: Selecting Text Evidence from the Download menu will create a comma-delimited file containing all of the information on the Text Evidence/Curation page including user-added validation and comments (Figure 26). Selecting RLIMS-P Result in BioC from the Download menu will create a file containing the RLIMS-P annotation in BioCreative format (Figure 27).

					Back to V	iews 👻	Download 👻	Layout -					
				Те	xt Evider	ice	Text Evidence						
1	TI - P90 I cell prolife AB - The	RSK eratic atax	arranges on . ia telangie	Chk1 in tl	ne nucleus ated - and	s for monit I rad3-rela	RLIMS-P Result oring of genomic inte ed kinase (ATR)/Ch	in BioC egrity durin hk1 pathwa	g				
			A	В	С		E	F	G	Н	1	J	
		1	###Text Evi	dence###									_
		2	#PubMed I	nformation		V							
		3	2235762	3 2012 Apr	Li P, Goto H,	Mol Biol Cell							
		4	#RLIMS-P A	nnotation									
		5	No.	Kinase	Substrate	Site	Comment	Validation	Sentence				
		6		1 p90 rsk	chk1	Ser-280		Agree	Treatment w	ith p90 RSK ir	hibitor impa	airs Chk1 phosp	phoi
		7		1 p90 rsk	chk1	Ser-280		Agree	In vitro anal	yses indicate t	hat p90 RSK	stoichiometric	ally
		8		1 p90 rsk	chk1	Ser-280		Agree	These result	s suggest that	p90 RSK faci	ilitates nuclear	Chl
		9		2 chk1	chk1	Ser-296		Agree	Together wit	th Chk1 phosp	phorylation a	t Ser-345 by A	TR a
		10		3 atr	chk1	Ser-345		Agree	Together wit	th Chk1 phosp	phorylation a	t Ser-345 by A	TR a
		11		4 atr	chk1	Ser-280	Kinase should be p90 rsk	Disagree	Together wit	th Chk1 phosp	horylation a	t Ser-345 by A	TR a
		12		5 N/A	chk1	Ser-280		N/A	Here we sho	w that Chk1 is	s phosphoryl	ated predomin	nant
		13		6 N/A	chk1	Ser-296,Ser-	345	Agree	In addition ,	Chk1 phosphe	orylation at S	Ser-345 and Se	r-29
		14	#User Add	Annotation									
		15	Kinase	Substrate	Site	Comment	Sentence						
		16	#Gene Nori	malization									
		17	Protein	Name	UniProtKB A	Annotation I	Comment	Validation					
		18	Kinase	atr	Q13535	3,4		Agree					
		19	Kinase	chk1	014757	2		Agree					
		20	Kinase	chk1	B4DT73	2		N/A					
		21	Substrate	chk1	014757	1,2,3,4,5,6		Agree					
		22	Substrate	chk1	B4DT73	1,2,3,4,5,6		N/A					
		23	#PMID Map	pping to UniPro	otKB								
		24	Protein AC/	/II Protein Nam	Organism Na	ame							
		25	B4DDD0/B4	4C cDNA FLI594	4 Homo sapier	ns (Human)							
		26	B4DT73/B4	D cDNA FLJ564	Homo sapier	ns (Human)							
		27	F5H7S4/F5	H Serine/three	Homo sapier	ns (Human)							
		28	014757/CH	IK Serine/three	Homo sapier	ns (Human)							
		29	Q15418/KS	6. Ribosomal p	Homo sapier	ns (Human)							
		30											
		31											

Figure 26: Downloading RLIMS-P annotation as a comma-delimited file

Last updated 08/28/2013

Figure 27: Downloading RLIMS-P annotation in BioC format