ngsShoRT 2.1 manual

Sari Khaleel (Sari.S.Khaleel.DM AT dartmouth.edu)
Dartmouth Medical School
Last updated 1-13-2014

Table of Contents:

I. Basic trimming concepts applied in ngShoRT
Il. Startup tutorial for the impatient

lll. Trimming methods
Explains the algorithm behind each trimming method

IV. Recommended sequence of methods and parameters
We list methods (and their parameter values) that we have found to be useful in trimming several test datasets.

V. Output files

VI. ngShoRT’s program structure
Explains the object-oriented part of ngsShoRT and its module hierarchy

VII. References and Suggested Readings

I. Basic trimming concepts applied in ngShoRT:
1. Take a paired-end (PE, forward and reverse read) or single-end files and trim them using a user-specified sequence
of trimming methods

2. When trimming reads, it’s important to set a minimum read length for trimmed reads. This is particularly useful
with some of the de Bruijn graph assemblers (SOAPdenovo and velvet), which discard reads shorter than the K-
mer length used for assembly. So, if the K-mer length for your assembly is 21, set min_rl to 21.

3. A trimmed read is "good" (and will thus be printed in the final output) if it meets two conditions: its length is >=
min_rl AND it was not filtered out by the following read-trimming methods: Igr, nperc, ncutoff, sadpt (kr), gseqB
(kr), and gseqo
¢ For PE-read pairs, a pair is removed if either or both of its reads are “bad.” If only one read is bad, its sister

“surviving” read is saved to a surviving_SE_mates.fastq file. If you’re assembling your trimmed reads using
velvet, you can assemble this file along with the trimmed PE reads:

.Jvelveth output_directory <hash_length> -fastq -shortPaired <shuffled_trimmed_PE_file> -fastq -short
[pathj/surviving_SE_mates.fastq

Il. Startup tutorial for the impatient:

NOTE: if you copy the commandline off this file without replacing the dashes (“-), you may get this error:
ERROR (main params: methods) : no methods were specified !!

1. First, Check your CPAN modules:

*

ngsShoRT requires the perl modules String::Approx and PerllO::gzip, which can be installed as follows (you’ll
need admin permissions):

perl -MCPAN -e shell
cpan> install String::Approx
cpan> install PerllO::gzip

See http://www.cpan.org/modules/INSTALL.html for more info on installing the module.

2. Download and untar ngsShoRT_2.1in a target directory
tar -xvf /[path/ngsShoRT_2.1.tar.gz

3. Run ngsShoRT on the sample_data

*

*

Paired-End (PE) fastq files:

cd <ngsShoRT’s path>

perl ngsShoRT.pl -pet sample_data/fastq/SRR065390 1 1st_2000reads.fastq.gz -pe2
sample_data/fastq/SRR065390_2_1st_2000reads.fastq.gz -o sample_data/output_directory -methods
5adpt

= This trims the gzipped paired end files (pe1 = forward read, pe2 = reverse reads) using the sadpt
(removal of 5’ adapters/primers, which by default trims known illumina primers) and prints the

output in sample_data/output_directory

Your output files should be at sample_data/output_directory:

= trimmed_SRR065390_1__ 1st_2000reads.fastq trimmed pe1 reads
= trimmed_SRR065390 2 1st_2000reads.fastq trimmed pe2 reads
= surviving_SE_mates.fastq trimmed pe1 or pe2 whose mate read was

filtered out during trimming

= extracted five prime_adapter_sequences_at 100 _percent_match.txt

= log.txt

= final_PE_report.txt full report of ngsShoRT runtime, % and number
of trimmed bases and reads, and method-
specific trimming statistics

Commonly used options include:

= -t <number of threads> default is 10
= -min_rl <minimum trimmed read length> default is 21
= -print_discarded _reads yes default is no

Additional trimming tools can be added to the -methods sequence, e.g., -methods Iqr_sadpt will filter
out low quality reads before trimming 5’-adapters.

We recommend the trimming method sequence -methods Iqr_s5adpt_tera for filtering low-quality reads
(reads with >50% bases having a quality score <2), removing their adapter/primer sequences, and
trimming their low-quality 3’-end bases

Single-End (SE) fastq file:

perl ngsShoRT.pl -se sample_data/fastq/SRR065390_1st_2000reads.fastq -o sample_data/output_directory -
methods 5adpt

QSEQ files:

You’ll use the same code as the PE files because ngsShoRT can auto-detect fastq and gseq files:

perl ngsShoRT.pl -se sample_data/qseq/SRR065390 1st 2000 _reads_gseq.txt -0
sample_data/output_directory -methods 5adpt

However, gseq file quality scoring is based at Phred64 for Illumina 1.8+, so the output files (which will be
in fastq format) are going to have this quality scoring as well. If you want them to be Sanger (Phred33)
based, add i2s to your method list to convert from illumina to Sanger scoring:

perl ngsShoRT.pl -se sample_data/qseq/SRR065390 1st 2000 _reads_gseq.txt -0
sample_data/output_directory -methods 5adpt_i2s

* Working with compressed files:

o

o

ngsShoRT auto-detects and opens files with the extensions .bz2, .gz, and .zip
If you want your trimmed files output to be gzipped, add -gzip to the commandline. For example,

perl ngsShoRT.pl -se sample_data/qseq/SRR065390 1st 2000 _reads_gseq.txt -0
sample_data/output_directory -methods 5adpt_i2s -gzip

Will produce the output file trimmed_SRR065390_1st_2000_reads_gseq.txt.gz

lll. Trimming Methods:
Our trimming methods can be divided into quality-trimming methods, which filter low-quality reads (Igr), trim low-quality
3’-ends of reads (TERA), or try to extract a high-quality string from the read (Mott).

Non-quality trimming methods include 3end, 5end, nsplit, nperc, 5adpt, and gseqo. 3end and 5end simply remove a
specific number of bases from the 3’ and 5’ end of reads, respectively. In contrast, nsplit, nperc and 5adpt examine the
alien bases (Ns, adapter sequences) in the sequence line to trim reads. Qseqo is a special case that works only for gseq
files. It removes reads whose filtering flag was o (i.e., they did not pass filtering during Illlumina sequencing analysis).

Non-trimming methods include i2s and s2i, which allow switching the quality scoring of reads from Illlumina to Sanger or
from Sanger to lllumina, respectively.

1. TERA : (trim by the) Three End Running Average quality score
lllumina reads generally have lower base-call quality towards the 3'-end of reads. Instead of non-discriminately
trimming a specific number of bases from the 3'-end of all reads (which can be done using 3end), without looking at
their quality scores, TERA aims to trim low-quality 3’ends

Algorithm: Trim bases from the 3' end of a read, based on the running average quality score, RAQS, of its bases.
Starting at the last (the most 3') base of the read, begin counting RAQs of all bases until reaching a base X where RAQS
exceeds a cutoff value specified by -tera_avg. If X's 5' index is < min_rl, it's set to min_rl (see above section to
understand why we do this). All bases 3' to X-index are trimmed out.

Example: -methods tera-tera_avg 3

2. 5'-adapter trimming (5adpt):
Removal of known (and user-specified) adapter/primer sequences from reads

Algorithm: Trim adapter sequences from reads (in PE reads, this means trim it from the forward and reverse reads). To
be more specific, match the adapter sequences to reads, then either remove the matched read or just trim out the
matched sequence and all bases 3’ to it.

* -5a_f: specifies the adapter sequences file, which can be one of our built-in adapter libraries (illumina or 454, with
illumina-genomic as default) or user-specified sequences.

e -fmi : The furthest matching index (i.e., how far into the read should the script be searching for adapter
sequences). We recommend setting it to raw_read_length - 10. Read_length obviously depends on your PE file
and their read lengths.

* 53 _mp: matching percentage. Default is 100 (which uses regex matching). If sa_mp is < 100, we use fuzzy
matching, implemented by the String::Approx library

* If an adapter sequence is matched, the method will:
1. Remove the detected adapter sequence and then remove a specific number of bases before and after it
(the number of before and after bases is specified in the adapter_sequences file),
2. Do one of two actions depending on the value of -5a_axn:
= kr:Kill the entire read
= ka:kill the detected adapter sequence and all bases after it

= Available lllumina libraries
¢ i-g (lllumina genomic, Default), i-p (lllumina PE), i-m (lllumina multiplex), i-n (lllumina Nlalll), i-d (lllumina
Dpnll), i-r (Illumina SRNA)

= Available 454 (pyrosequencing) libraries are:
¢ p-b (pyroseq basic), p-r (pyroseq sRNA), p-p (pyroseq PE), p-a (pyroseq amplicon)

Example: -methods 5adpt -5a_fi-g-5a_axn ka
+ willkill reads that match to an adapter in the illumina-genomic library instead of the default action to just trim
the matched sequence and all bases following it (3’ to it) in the read

Notes on approximate matching:
* Approximate matching is case-insensitive, and is done according to a user-specified match_percentage. A
match_percentage of 90% means that for every 10 bases, only one mismatch is allowed, and so on.

* The measure of approximateness for String::Approx is Levenshtein edit distance. More detail on how this String::
Approx works can be found at : http://search.cpan.org/~jhi/String-Approx-3.26/Approx.pm
» Additional approximate matching options are [-5a_ins INT -5a_del INT-5a_sub INT]
¢ They refer to the maximum allowed number of insertions, deletions, and substitutions respectively.
¢ So, for example (-5a_mp 90 -5a_ins 0 -5a_del 0) means that one mismatched character is allowed in every 10
chars, but it can NOT be a deletion or an insertion. Thus, it can only be a substitution.

3. nsplit
Instead of completely removing a read with N bases (which can be done using our ncutoff and nperc methods), we split
the read around the string to save some of the read

Algorithm:

1. Search the read for substrings of consecutive uncalled bases (N, n, .), which we call Nblocks, whose length >
min_Nblock_| (min_Nblock | is a user-specified cutoff). If there are >1 N-strings that satisfy this condition , pick
the longer or leftmost one.

2. If the read has such N-block, delete the block and use the bases after and before it to create two new reads, and if
this is PE_trimming, pair them with copies of their parent read’s sister read.

Example: -methods nsplit -nsplit_len 5
* Wil split aread around a string of = 5 Ns if it finds one

4.Iqr
Remove low-quality reads from the PE files.

Algorithm:

Given a user-specified Low quality score cutoff (--Igs) and a percentage cutoff for bases whose quality score is <= Igs,
which we call Iq_p.

- Count the number of bases whose qual score is <=Iq. Let’s call these LQ bases.

- Label the read “bad” if the percentage of LQ bases. If it’s >= LQ_perc_cutoff, “good” otherwise.

Example: -methods Iqr -Igs 4 -Igp 50
= Willfilter out a read if it has = 50% of bases with a quality score <4

5. mott
Extract the highest-quality string of bases from the read. In other words, trim out low-quality 5’ and 3’ bases from the
read. The Richard-Mott trimming algorithm is described as follows in CLC’s manual:

The algorithm:

For every base, convert its quality score, Q, to its corresponding Pe (Perror). Pe = 10 (-Q/10)

So[Q=0->Pe=1],[Q=2->Pe=0.6],[Q=10-> Pe = 0.1], [Q=20 --> Pe = 0.01], [Q=30 --> Pe = 0.001]

For every base, calculate its LmP value, which equals (Limit - Pe).

For every base (starting from the 3' end for short reads), add its LmP value to a running sum. If the sum drops below

zero, set it to zero.

4. When done with the entire sequence, retain the part of the sequence between 1st positive running sum and the
highest value of the running sum.

[UVIRN RN

How to choose limit value:
* LmP=mott_limit - Perror[base], where Perror[base] = 10 (-Q/10), where Q = quality score
= So,whenLmP =0, mott_limit = 10°(-Q/10)

= Atlimit=1, LmP will be -ve for only bases with Q < 0
= Atlimit = 0.6, LmP will be -ve for only bases with Q < 2

Example: -methods mott -mott_lim 0.6
= Will basically extract the highest quality substring, with minimum allowed base quality score being 2

6 and 7. ncutoff and nperc
A common trimming approach to to remove all reads with N-bases. However, this may result in removing some reads
that contain a small number of N bases and that may still be of use for assembly and mapping

Algorithm: remove reads if the number or percentage of N bases in them exceed a specific cutoff. Defaults are 50 and 50

Example: -methods ncutoff -ncutoff_len 3
= Will filter out reads with > 3 N-bases

8 and 9. 3end and 5end
NGS reads generally have decreasing quality scores (as low as 0) towards their 3’-ends, and removing a specific number
of bases from the 3’-end (or 5’-end) of all reads is commonly done to solve this problem. Alternatively, these methods
may be used to remove some fixed sequence at the beginning or ends of reads, e.g., a primer

Example: -methods 3end_5end -n3 5-n5 10
= Willremove 5 bases from the 3’-end of reads and 10 bases from their 5’ ends

10 and 11. gseqo and gseqB (gqseq format-specific reads)

* The gseq file format provides a failed_chastity filter flag that normally marks a read for being filtered from Illumina’s
gseq output, but there are occasions where this filtering setting is turned off. qseqo detects this flag in gseq input files
and removes any reads still carrying it.

* Earlier versions of Illumina (< 1.8) used a score mapping based at Phred 64 (corresponding to zero quality) and
included quality scores 2, 1, and 0, with the 2 score corresponding to the ‘B’ character, a special indicator for
“unknown” quality scores. gseqB was designed to trim reads that contain more ‘B’-scored bases than this cutoff.

Algorithm (gsegB): in the global modes, remove a gseq read with > gB_num bases. In local mode, search for strings of >
gB_num bases in a read and either trim the entire read (-qB_axn kr) or just the string and all bases 3’ to it (-qB_axn ka).
Default mode is local, and default action is ka — trim only the string and bases following it.

Example: -methods gseqo_qgseqB -qB_mode global -qB_num 10
= Will filter out gseq reads with the o-chastity_filter flag and also filter reads with > 10 B-scored bases

12. rmHP
Removing homopolymers from reads

Algorithm: search for a homopolymer sequence, h, whose length exceeds a user-specified limit (default is 8) and consists
of one of the bases specified by the user (default is all bases — agct)

Example: -methods rmHP -rmHP_ml 10 -rmHP_bases ag
= Will remove only homopolymers of “A” or “G” bases whose length is > 10

13. i2s and s2i
The two most common quality score settings in fastq files are Sanger (where ASCII #33 = zero phred) and old Illumina
(pre 1.8+) score with ASCII #64 as the base.

Algorithm: convert scoring from old illumina to Sanger using i2s or from Sanger to old Illumina using s2i
Example: -methods i2s

* This is used for a pre 1.8+ illumina-generated fastq/qgseq file (phred 64-based) where the output file will be scored
in Sanger (phred 33-based)

IV. Recommended Trimming Methods

= We recommend the trimming methods -methods Iqr_sadpt_tera for filtering low-quality reads (reads with >50%
bases having a quality score <2), removing their adapter/primer sequences, and trimming their low-quality 3’-end
bases

V. Output files

* For PE input (-pe1 SR_foo_1.fq-pe2 SR foo_2.fq):

*

*
*
*
*

trimmed_<original filename>_foo_1.fastq
trimmed_<original filename> foo_2.fastq

surviving_SE_mates.fastq Contains surviving (widowed) mates. See prev section
log.txt Contains used params and trimmer progress
final_PE_report.txt Contains total and by-method trimming stats

= For SE input (-se SR_foo.fq):

*
*

*

trimmed_<original filename>_foo.fastq
log.txt Contains used params and trimmer progress
final_SE_report.txt Contains total and by-method trimming stats

VI. ngsShoRT’s program structure

* Thesingle_fQ_read object

*

Unlike most trimming tools, ngsShoRT does not perform trimming directly on the reads file. Instead, it loads
the read’s sequence, quality scores, and header into a single_fQ_read object, which comes with its own set
of (trimming) methods and properties. For PE reads, there are two single_fQ_read object for the two paired
reads, which are then processed as a PE_fQ_pair.

The purpose of this somewhat complex method of managing reads is to make the trimming methods and
output modules of ngsShoRT format-independent, i.e., ngsShoRT can potentially trim any read format (fastq,
fasta.qual, gseq) as long as its components are loaded into a singe_fQ_read object. At the moment, we do
that only for fastq and gseq formats.

* Threading

*

ngsShoRT’s multithreading (using the perl Threads module) implements embarrassingly parallel processing —
each thread processes a separate part of the input file, and final trimmed thread outputs are merged in a
final processing step.

* Program architecture

*

PE files are processed using the process_PE_files.pm module, which splits the files into consecutive sections,
each of which is trimmed by a separate thread running the process PE_files_section.pm module. This
module then runs trimming modules (specified by the -methods option) on the reads, producing a trimmed
file section (along with any surviving_PE_mates.fastq) files. When all threads are finished trimming their
sections, process_PE_files.pm runs a merging module to merge the files into one final trimmed output file.

SE files are processed using the process_SE_files.pm module in a similar fashion to the PE files.

VII. References and Suggested Readings

Cox, M. et al. (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC
Bioinformatics, 11:485.

CLC bio. CLC Genomics Workbench, User Manual.
http://www.clcbio.com/files/usermanuals/CLC_Genomics_Workbench_User Manual.pdf

FASTX-Toolkit, http://hannonlab.cshl.edu/fastx_toolkit/
Miller,J.R. et al. (2010). Assembly algorithms for next-generation sequencing data. Genomics, 95, 315-327.
Schendure,J. and Hanlee,J. (2008) Next-generation DNA sequencing. Nature biotechnology, 26, 1135-1145.

Zerbino,D. and Birney,E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome
Research, 18 (5):821-829.

Zerbino,D. (2008). Velvet Manual, version 1.1. Available online at http://www.ebi.ac.uk/~zerbino/velvet/Man ual.pdf

DiGuistini,S. et al. (2009). De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina
sequence data. Genome Biology, 10:R94.

Garcia,T.l. et al. (2011). Effects of short read quality and quantity on a de novo vertebrate transcriptome assembly.
Comparative Biochemistry and Physiology, Part C. ScienceDirect, In Press.

Shulaev,V. et al. (2010). The genome of woodland strawberry (Fragari vesca). Nature Genetics, 43, 109-116.

Haridas,S. et al. (2011). A biologist's guide to de novo genome assembly using next-generation sequence data: A test
with fungal genomes. Journal of Microbiological Methods, 86:3, 368-375.

Atherton,R. et al. (2010). Whole genome sequencing of enriched chloroplast DNA using the lllumina GAIl platform.
Plant Methods, 6:22.

